The Unexpected Reductive Products of δ - Alkoxyenal by Sodium Borohydride in Methanol with A Trace of Magnesium Methoxide

Yu XIA, Xiang Shu XIAO, Xu Chang HE, Dong Lu BAI*
Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031

Abstract

Reduction of δ-alkoxy enal 1 and 4 by sodium borohydride in methanol with a catalytic amount of magnesium methoxide gave unexpected methoxylated poducts $\mathbf{3}$ and $\mathbf{6}$ respectively.

Keywords: Sodium borohydride, Magnesium methoxide, Michael addition.

The selective 1,2-reduction of α, β-unsaturated carbonyl compounds such as enones and enals, has been achieved by $\mathrm{NaBH}_{4}{ }^{1}$. In the course of our studies toward the total synthesis of macrolactin A , it was found that reduction of enal $\mathbf{1}$ by NaBH_{4} in MeOH , which contained a trace of $\mathrm{Mg}(\mathrm{OMe})_{2}$ from the preparation of absolute MeOH , formed an unexpected product $\mathbf{3}$ (Table 1).

According to the known procedues ${ }^{2}$, allylic alcohol $\mathbf{2}$ was normally formed in 78% yield by reduction of enal 1 with NaBH_{4} in MeOH at $-78^{\circ} \mathrm{C}$. However, when methanol contained a catalytic amount of $\mathrm{Mg}(\mathrm{OMe})_{2}$, the reduction of $\mathbf{1}$ gave methoxy compound $\mathbf{3}$ instead of $\mathbf{2}$ in 54% yield. The structure of the unexpected reductive product $\mathbf{3}$, which is a mixture of two diastereomers in a ratio of $1: 1$, was confirmed by ${ }^{1} \mathrm{H} N \mathrm{NR},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, MS and IR^{3}. The acetate ${ }^{4}$ of $\mathbf{3}$ was also prepared in order to assist the structure assignments of the product. To further understand this reaction, experiments were carried out with δ-silyloxy enal 4 and 7 -alkoxy enal 7. Enal 4 gave the 1,2-reduction product 5 in 92% yield via procedure i, while a saturated methoxy alcohol $\mathbf{6}$ was formed in 66% yield via procedure ii. However, enal 7 only gave allylic alcohol 8 by both procedures in a yield around 90% (Table 1).

In respect of the mechanism of the distinct reductive products of enal $\mathbf{1 , 4}$ and $\mathbf{7 v i a}$ procedure i and ii, we suppose that a catalytic amount of $\mathrm{Mg}(\mathrm{OMe})_{2}$ and the δ-alkoxy group of α, β-unsaturated aldehyde are requisite for the Michael addition of methoxy group. A possible mechanism is envisioned in Scheme 1, in which magnesium first coordinates with the oxygen of δ-alkoxy group, forming a six-member cyclic transition state, then one methoxy group of $\mathrm{Mg}(\mathrm{OMe})_{2}$ adds to the β carbon atom of enal followed by the reduction of aldehyde group. This mechanism can explain well why the methoxy addition did not occur to enal 7, considering the disfavor of forming an eight-member ring transition state.

[^0]Table 1 Reduction of enal by NaBH_{4} via procedure i or ii
substrate

Procedure i: 1.5 molar equiv. of NaBH_{4} for each mole of enal in MeOH at $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$. ii: The same conditions as in i except the MeOH containing a catalytic amount of $\mathrm{Mg}(\mathrm{OMe})_{2}$.

Scheme 1

In summary we found that reduction of δ-alkoxy α, β-unsaturated aldehyde by $\mathrm{NaBH}_{4} / \mathrm{MeOH}$ with a catalytic amount of $\mathrm{Mg}(\mathrm{OMe})_{2}$, gave methoxy alcohol via Michael addition and reduction.

Acknowledgment

We thank the National Natural Sciences Foundation of China and State Key Laboratory of Bioorganic and Natural Products Chemistry for financial supports.

References and Notes

1. S.W.Chaikin, W.G.Brown, J. Am. Chem. Soc., 1949, 71, 122.
2. D.C.Whirtenour, S.Masamune, J. Org. Chem., 1989, 54, 2817.
3. All products show satisfactory spectroscopic data. Selected data for compound $3 .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.23-7.34(\mathrm{~m}, 5 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.73-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, 1 \mathrm{H} \mathrm{J}=3.4$, 11.2 Hz,), $3.50(\mathrm{dd}, \mathrm{J}=5.4,1 \mathrm{H} 11.2 \mathrm{~Hz}$, , $3.47(\mathrm{~s}, 1.5 \mathrm{H}), 3.40(\mathrm{~s}, 1.5 \mathrm{H}), 3.25-3.30(\mathrm{~m}, 1 \mathrm{H})$, $3.14-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{brs}, 1 \mathrm{H}), 1,78-1.90(\mathrm{~m}, 2 \mathrm{H}) ; \operatorname{MS}(\mathrm{m} / \mathrm{z}, \%): 252$ ($\mathrm{M}^{+}, 3.1$), 149 (38), 91 (100).
4. Alcohol 3 was converted to the corresponding acetate under standard conditions $\left(\mathrm{Ac}_{2} \mathrm{O}: \mathrm{pyr}\right.$: DMAP $\left.=1.5: 2.0: 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ in quantitative yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.26-7.37 (m, 5H), 4.58 (s, 2H), 4.16-4.22 (m, 2H), $3.64(\mathrm{dd}, 1 \mathrm{H} \mathrm{J}=3.5,11.3 \mathrm{~Hz}$), $3.51(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=5.9,11.3 \mathrm{~Hz}), 3.47(\mathrm{~s}, 1.5 \mathrm{H}), 3.40(\mathrm{~s}, 1.5 \mathrm{H}), 3.16-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.09(\mathrm{~m}, 1 \mathrm{H})$, 2.82-2.93 (m,1H), 2.04 (brs, 1 H$), 1,80-2.00(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 294\left(\mathrm{M}^{+}\right), 91(84), 71(100)$.

Received 24 October, 2001

[^0]: *E-mail: dlbai@mail.shenc.ac.cn

